LonHand 郎汉德[®]

电导率盐度 TDS 多合一传感器 使用说明书

适用产品系列/型号: LH-WQS-ECSTTDS-485-UI

郎汉德

可信赖的物联网终端设备

历史版本

修订日期	修订记录	版本号	修订人
2021/12/23	版式修订,错误修改	V2.5	李世涛

目录

1.	规格参数	2 -
2.	产品尺寸	3 -
3.	使用步骤	3 -
	3.1. 电极的极化	3 -
	3.2. 电极的标定	3 -
	3.3. 电极安装	3 -
4.	通信协议与数据格式	4 -
	4.1. 出厂默认通讯参数	4 -
	4.2. 功能码说明	4 -
	4.3. 寄存器地址说明	5 -
	4.4. 指令解析	7 -
	读电导率值	7 -
	读电阻率值	8 -
	读温度值	8 -
	读 TDS 值	9 -
	读盐度值	9 -
	4.5. 常用指令示例	9 -
	4.6. 校正说明 1	12 -
	4.6.1. 校正前 1	12 -
	4.6.2. 开始校正	12 -
5.	电极接线 1	3 -
6.	产品维护保养 1	4 -
	6.1. 维护保养和存储	4 -
	6.2. 常见问题与解决办法 1	
7.	售后服务 1	
	7.1. 售后服务承诺 1	
	7.2. 免责声明1	
	7.3. 联系方式	

使用前说明

- ❖ 使用之前请仔细研读本说明。
- ❖ 本说明适用于智慧型离子系列电极。
- ❖ 传感器敏感膜属于易损品,一旦损坏将无法修复。
- ❖ 打开包装前请检查包装是否有损坏。如果外包装已破损,请不要继续打开包装物,请 立即与销售公司、品牌最近的授权代理商或直接与我们联系,运输方代表到场后共同 打开包装检验电极是否损坏,建议拍照取证。
- ❖ 如外包装完好但电极损坏请立即与销售公司、品牌最近的授权代理商或直接与我们联 系,并将电极原包装寄回。
- ◆ 电导率电极储存前需要晾干,不要将电极放在蒸馏水或去离子水内存储。
- ❖ 测量过程中, 电极前端若有污垢、黏着物或结垢, 将会导致测量值不准确或波动, 应 及时清洗和校准。

1. 规格参数

参数	说明
测量范围	0.1 ~ 20000uS/cm
温度测量范围	0.0 ~ 60℃, 0.0 ~ 80℃
准确度	≤±3%
分辨率	0.01uS/cm
売体材质	PC, PBT 防腐
供电电压	9 ~ 30V DC
补偿模式	自动/手动
连接螺纹	M39*1.5, NPT3/4
信号线长度	5m (可定制)
耐压范围	0 ~ 4bar
防护等级	IP68
信号输出	4~20mA 和 RS485
输出负载	小于 750Ω
工作湿度	相对湿度小于 90%
电流精度	1%FS

2. 产品尺寸

产品尺寸图

3. 使用步骤

3.1. 电极的极化

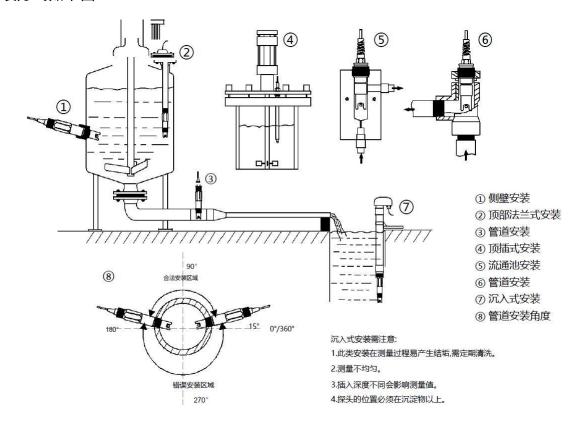
极化方法: 将电极与变送器相连, 将电极放入待测溶液中, 并接上电源, 通电后即开始极 化。

3.2. 电极的标定

仪表出厂前一般已做标定,用户可直接投入使用。

为保证电导率仪器的测量精度,使用前应用电导率仪对电极常数进行重新标定,同时,应 定期进行电导率电极常数标定, 如出现误差较大时应及时更换电导电极。

建议用户每1到2月标定—次。


3.3. 电极安装

电导率电极一般建议选择流通槽安装,测量更稳定,更精准。

管道安装时, 15°-165°为合法安装区域, 其余为错误安装区域。

安装方式如下图

4. 通信协议与数据格式

4.1. 出厂默认通讯参数

通讯波特率: 9600 (默认)

数据停止位:8

停止位位数: 1

奇偶校验位:无

地址: 1 (默认)

4.2.功能码说明

支持 03,06,16 等常用功能码,输出寄存器在双字数据写操作或批量写入多个数据时,

使用 16 功能码

03	读单个或多个寄存器
06	写单个寄存器
16	写多个寄存器

4.3. 寄存器地址说明

寄存器名称	数据地址	数据类型	长度 (字)	读/写	说明
电导率值	0x 00 00	Float (浮点)	2	R (读)	默认单位为 ms/cm <i>,</i> 如需转 换为 US/cm <i>,</i> 乘以 1000
电阻率值	0x 00 02	Float (浮点)	2	R (读)	Ω·cm
温度	0x 00 04	Float (浮点)	2	R (读)	°C
TDS	0x 00 06	Float (浮点)	2	R/W	ppm 或 mg/L
盐度	0x 00 08	Float (浮点)	2	R/W	ppm 或 mg/L
电导率常数	0x 00 0A	Float (浮点)	2	R/W	
补偿系数	0x 00 0C	Float (浮点)	2	R/W	
手动补偿温度	0x 00 0E	Float (浮点)	2	R/W	
温度偏移	0x 00 10	Float (浮点)	2	R/W	
波特率	0x 00 12	Float (浮点)	2	R (读)	
从机地址	0x 00 14	Float (浮点)	2	R (读)	
滤波秒数	0x 00 16	Float (浮点)	2	R (读)	

		七寸平皿及	103 % []	传 恩	月廿 <u>www.tonnand.com</u>
电极灵敏度	0x 00 18	Float (浮点)	2	R (读)	
补偿模式	0x 00 1A	Float (浮点)	2	R (读)	
型号补偿类型	0x 00 1C	Float (浮点)	2	R (读)	950.0 — 1000, 950.1 — NTC10K
软件版本	0x 00 1E	Float (浮点)	2	R (读)	
4 - 20mA 高点值	0x 00 20	Float (浮点)	2	R (读)	
高量程 电阻系数	ox 00 22	Float (浮点)	2	R (读)	
采集周期	0x 00 24	Float (浮点)	2	R (读)	
操作模式	0x 00 26	Float (浮点)	2	R (读)	
修改波特率	0x 00 12	Signed (整 形)	1	W(写)	2400,4800, 9600,19200 38400,43000,57600
修改 从机地址	0x 00 14	Signed (整 形)	1	W(写)	1-254
修改滤波秒数	0x 00 16	Signed (整 形)	1	W(写)	秒数值
修改 补偿模式	0x 00 1A	Signed (整 形)	1	W(写)	0 为自动,1 为手动
调整 浮点顺序	0x 00 32	Signed (整 形)	1	W(写)	0 为正序 1 为反序

郎汉征	即汉德 LonHand 电导率盐度 TDS 多合一传感器使用说明书 www.lonhand.com						
修改温补类型	0x 00 33	Signed (整 形)	1	W(写)	0 为 PT1000,1 为 NTC10K		
恢复默认值	0x 00 64	Signed (整 形)	1	W(写)	1		
恢复波特率和地址	0x 27 0F	Signed (整 形)	1	W(写)	1		
修改 4 - 20mA 高点 值	0x 00 12	Float (浮点)	2	W(写)			
修改高量程 电阻系数	0x 00 14	Float (浮点)	2	W(写)			
修改传感器采集周期	0x 00 16	Float (浮点)	2	W(写)	300-30000ms		
修改操作模式	0x 00 28	Signed (整 形)	1	W(写)	0: 周期采集 1: 触发采集		
修改 4- 20m A 系数	0x 00 20	Float (浮点)	2	W(写)			

4.4. 指令解析

读电导率值

命令帧: 01 03 00 00 00 02 C4 0B

地址	功能码	寄存器起始地址	数据长度	CRC 校验
0x01	0x03	0x00 0x00	0x00 0x02	0xC4 0x0B

响应帧: 01 03 04 3E 95 89 C7 C1 F5

地址	功能码	数据长度	寄存器数据内容	CRC 校验
0x01	0x03	0x04	0x3E 0x95 0x89 0xC7	0xC1 0xF5

读电阻率值

命令帧: 01 03 00 02 00 02 65 CB

地址	功能码	寄存器起始地址	数据长度	CRC 校验
0x01	0x03	0x00 0x02	0x00 0x02	0x65 0xCB

响应帧: 01 03 04 45 7B 35 1D 48 7F

地址	功能码	数据长度	寄存器数据内容	CRC 校验
0x01	0x03	0x04	0x45 0x7B 0x35 0x1D	0x48 0x7F

读温度值

命令帧: 01 03 00 04 00 02 85 CA

地址	功能码	寄存器起始地址	数据长度	CRC 校验
0x01	0x03	0x00 0x04	0x00 0x02	0x85 0xCA

响应帧: 01 03 04 3E 95 89 C7 C1 F5

电导率盐度 TDS 多合一传感器使用说明书 www.lonhand.com

地址	功能码	数据长度	寄存器数据内容	CRC 校验
0x01	0x03	0x04	0x3E 0x95 0x89 0xC7	0xC1 0xF5

读 TDS 值

命令帧: 01 03 00 06 00 02 24 0A

地址	功能码	寄存器起始地址	数据长度	CRC 校验
0x01	0x03	0x00 0x06	0x00 0x02	0x24 0x0A

响应帧: 01 03 04 3E 95 89 C7 C1 F5

地址	功能码	数据长度	寄存器数据内容	CRC 校验
0x01	0x03	0x04	0x3E 0x95 0x89 0xC7	0xC1 0xF5

读盐度值

命令帧: 01 03 00 08 00 02 45 C9

地址	功能码	寄存器起始地址	数据长度	CRC 校验
0x01	0x03	0x00 0x08	0x00 0x02	0x45 0xC9

响应帧: 01 03 04 3E 95 89 C7 C1 F5

地址	功能码	数据长度	寄存器数据内容	CRC 校验
0x01	0x03	0x04	0x3E 0x95 0x89 0xC7	0xC1 0xF5

4.5. 常用指令示例

_		®
90	77/3	9
	`\/ /	4 44 4
	A 7/ 155	
MI		LonHand

序号	功能	发送指令	返回指令	备注
				其中 2C 81 40 91 换序
1	读测量值	01 03 00 01 00 02 95 CB	01 03 04 2C 81 40 91 52 E7	号 40 91 2C 81 转浮点
				为 4.53
	读温度		01 03 04 72 37 41 DB 20	其中 72 37 41 DB 换序
2	测量值	01 03 00 03 00 02 34 0B	BE	号 41 DB 72 37 转浮点
	沙里田		DL	为 27.4
	读电流			其中 00 00 41 40 换序
3		01 03 00 05 00 02 D4 05	01 03 04 00 00 41 40 CB 93	号 41 40 00 00 转浮点
	110 LI			12.00
4	读警告	01 03 00 07 00 01 35 CB	01 03 02 00 00 B8 44	其中 00 00 为当前状态
5	写测量	01 06 00 08 00 01 C9 C8	01 06 00 08 00 01 C9 C8	设为 mV 模式
	模式	01 00 00 00 00 01 07 00	01 00 00 00 00 01 05 00	
6	写测量	01 10 00 0A 00 02 04 00	01 10 00 0A 00 02 61 CA	测量上限设为 10.00
	上限	00 41 20 42 58	0. 10 00 0/ 00 02 01 0/	从至上队队/10.00
7	写测量	01 10 00 0C 00 02 04 00	01 10 00 0C 00 02 81 CB	测量下限设为 1.00
,	下限	00 3F 80 E3 AA	01 10 00 0C 00 02 01 CB	//J至1/K以/J1.00
8	写温度	01 10 00 0E 00 02 04 00	01 10 00 0E 00 02 20 0B	温度上限设为 100.00
	上限	00 42 C8 43 15	01 10 00 0L 00 02 20 0B	,
9	写温度	01 10 00 10 00 02 04 00 00	01 10 00 10 00 02 40 0D	温度下限设为 5.00
	下限	40 A0 C3 1B	01 10 00 10 00 02 40 0D	(씨정기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기
10	写测量值	01 10 00 12 00 02 04 00	01 10 00 12 00 02 E1 CD	设为 1.00

_	1			
	偏移量	00 3F 80 63 2A		
11	写温度	01 10 00 14 00 02 04 00	01 10 00 14 00 02 01 CC	VII + 1 00
	偏移量	00 3F 80 E3 00	01 10 00 14 00 02 01 CC	设为 1.00
12	写阻尼	01 06 00 16 00 01 A9 CE	01 06 00 16 00 01 A9 CE	设为 1
12	系数	01 00 00 10 00 01 A3 CE	01 00 00 10 00 01 A7 CE	I
13	写设备	01 06 00 19 00 02 D9 CC	01 06 00 19 00 02 D9 CC	设为 2
ر ۱	地址	01 00 00 19 00 02 D9 CC	01 00 00 19 00 02 D9 CC	以 /ソ 乙
14	写波特率	01 06 00 1A 00 00 A8 0D	01 06 00 1A 00 00 A8 0D	设为 2400
15	写恢复出	01 06 00 10 00 55 00 00	01 06 00 10 00 55 00 00	发一次就恢复出厂默认
15	厂	01 06 00 1B 00 FF B9 8D	01 06 00 1B 00 FF B9 8D	值
16	写 mV 校	01 10 00 30 00 02 04 00	01 10 00 30 00 02 41 C7	写入 mV 标准液值
10	正值	00 42 AC C0 66	01 10 00 30 00 02 41 C7	86mV
17	读校正	01 03 00 34 00 02 85 C5	01 03 04 CC CD 3E 4C 45	其中 CCCD3E4C 换序为
17	斜率	01 03 00 34 00 02 03 C3	09	3E4CCCD 转浮点为 0.2
18	写第一点	01 10 00 36 00 02 04 00 00	01 10 00 36 00 02 A1 C6	设为 1.000
10	校正液	3F 80 60 C1	01 10 00 30 00 02 A1 C0	۱.۵۵۵ و کی
	写第二点	01 10 00 38 00 02 04 00 00		
19	校正液	41	01 10 00 38 00 02 C0 05	设为 10.000
	1人工/仪	20 CO 95		
20	写手动	01 10 00 3A 00 02 04 00	01 10 00 3A 00 02 61 C5	设为 20.0
20	温度	00 41 A0 40 EC		该月 20.0
21	写零点	01 06 00 3E 00 FF A8 46	01 06 00 3E 00 FF A8 46	确认矫正零点

	校正			
22	写斜率	01 06 00 3F 00 FF F9 86	01 06 00 3F 00 FF F9 86	确认矫正斜率
22	校正	01 00 00 3F 00 FF F9 80	01 00 00 3F 00 FF F9 80	M 以对广东社学
22	读测量	01 03 00 66 00 01 64 15	01 03 02 2E E0 A4 6C	其中 2EE0 转整数为
23	AD	0103000000010413	01 03 02 2E E0 A4 6C	12000

4.6. 校正说明

4.6.1. 校正前

在校正前给传感器写入零点校正的值(即第一点的值)和斜率校正的值(即第二点的值)

发送指令: 01 10 00 36 00 02 04 00 00 3F 80 60 C1

若斜率校正的值为 10.000ppm, 则向 0x38 寄存器写入数据 0x41 20 00 00,

若零点校正的值为 1.000ppm, 则向 0x36 寄存器写入数据 0x3F 80 00 00,

发送指令: 01 10 00 38 00 02 04 00 00 41 20 C0 95

4.6.2. 开始校正

第一步:

电极清洗擦干放入第一点校正液 1.000ppm 内,发送指令 01 03 00 66 00 01 64 15 读 0x66 寄存器内测量 AD 值,待测量 AD 值稳定后,向 0x 3E 号寄存器内写入确 认校正的指令:

发送指令: 01 06 00 3E 00FF A8 46

第二步:


电极清洗擦干放入第二点斜率校正液 10.000ppm 内发送指令 01 03 00 66 00 01 64

15 读 0x66 号寄存器内测量 AD 值, 待测量 AD 值稳定后, 向 0x 3F 号寄存器内写 入确认校正的指令:

发送指令: 01 06 00 3F 00 FF F9 86

5. 电极接线

请仔细按照说明书接线,错误的接线将导致产品的完全损坏.

严禁在所有线缆连接完成之前通电,以免发生危险,在通电之前请务必仔细检查系统所 有接线,确认完全正确后方可通电。

6. 产品维护保养

6.1. 维护保养和存储

冲洗电极后只能用柔软的纸巾吸干水分, 切勿摩擦敏感膜。

短期储存电极时,必须旋上保护套,保护套内必须含有稀释过的铵离子标准液 (0.0001M 或者 1ppm) 浸泡。

如果存储过夜或更长,则应清洗电极,并擦干,然后放进原来的包装内。

必须保持电缆线接头清洁,不能受潮或进水。

当发现电极上有白色氯化钾晶体积聚时,这一盐态的物质不会影响使用,只需用蒸 馏水漂洗电极去除晶体后吸干即可。

维护频率:

维护任务	建议维护频率	
清洗传感器	每 30 天清洗一次	
检查传感器是否损坏	每 30 天检查一次	
校准传感器(如主管部门有要求)	根据主管部门所要求的维护日程进行	

6.2. 常见问题与解决办法

使用时出现测量不准时,一般仪表的故障率较低,主要是电极的状态发生了变化, 因此需检查电极是否在良好状态。 而电极也不易损坏,一般是敏感膜破损,结垢,参 比中毒,堵塞等,应及时维护保养或更换。

仪器显示值过大、过小或无变化时,检查电极与仪表连接线或接头是否完好。

Modbus 故障排除:

问题	可能的原因	解决方案
	波特率或停止位与 Modbus 主设备设置不一致	验证设置是否与 Modbus 主设备设置一致,验证是否将 Modbus 主设备奇偶校验设置为 None
	RS232 或 RS485 电缆有故障	更换/修理电缆
Modbus 无响应	没有网络偏移和终止,或网络偏移和终止不适合	检查所有网络设备的终止或偏移设 置。仅网络的端点应该打开终止,且 网络上应该仅有一点提供偏移。
	从机地址不正确,或从机地址 与另一个总线设备的地址相同	验证所有地址是否都是唯一的,且在 1~247 之间
	不支持寄存器	验证是否支持寄存器
Modbus 响应异 常	数据类型不正确	验证请求的寄存器数据类型是否与 Modbus 主设备请求匹配,例如,不能使用 2 字节整数型数据来访问某个浮点型数据。请求某个浮点型数据 (2 个寄存器/4 个字节)时,必须同时请求 2 个寄存器

郎汉德[®]LonHand

7. 售后服务

7.1.售后服务承诺

本公司从客户购买时起对仪器仪表传感器有一年的保修期,只要在保修期内非人为

使用不当造成的损坏,请预付运费将仪表妥善包装好后运回免费为您修理,本公司会根据

实际仪表的损坏分析原因,超出质保条件,需要收取维修费用。

任何理由的返修必须通过本公司客户服务部批准才可返回,申请批准后请将返修卡

随维修品一起返回, 返修物品必须仔细包装以免在运输途中损坏并加保险, 本公司不会对

任何因返修物品遗失或粗劣包装而造成的损坏承担责任。

7.2. 免责声明

本文档未授予任何知识产权的许可,并未以明示或暗示、或以禁止发言或其它方式授

予任何知识产权许可。除在其产品的销售条款和条件声明的责任之外,我公司概不承担任

何其它责任。并且我公司对本产品的销售和/或使用不作任何明示或暗示的担保,包括对

产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等均不

作担保。本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

7.3. 联系方式

地址: 山东省济南市历下区茂岭山三号路中欧校友产业大厦 12 层

网址: www.lonhand.com

电话: 0531-88783739 接通后转 0

- 16